Quantitative summarization of gene annotations using Disease Ontology

Pan Du, Ph.D.

Biomedical Informatics Center
Northwestern University
Outline

- Background
- Method of quantitative summarization of gene annotations
- Evaluation of the method
- Applications
- Conclusion
4070 genes associated with 1851 DO terms
Lots of genes associate with tens, even over one hundred DO terms (multiple GeneRIF records may map to the same DO term).
 - Over 1100 genes have > 5 disease related GeneRIF records
 - Over 600 genes have > 10 disease related GeneRIF records
 - Gene EGFR (Entrez ID 1956) has 458 disease related GeneRIF records
An Example Gene Annotation using DO (Gene TDP-43)

GeneRIFs: Gene References Into Function

1. tdp-43 deposits have been associated with neurodegenerative diseases--{review}
2. several mutations of the TDP-43 gene were identified as the causative gene of autosomal-dominant familial ALS (review)
3. TDP-43-positive inclusions within neurons and oligodendroglia were found in brains from patients with Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB)
5. TDP-43 is the newest member of the growing list of neurodegenerative proteinopathies, but unique in that it lacks features of brain amyloidosis.
6. TDP-43 may not necessarily be the key disease protein in ALS and indicate that the major target(s) of ubiquitination remain to be identified.
7. The presence of TDP-43 inclusions in PID suggests that TDP-43 accumulation may be an important component of many neurodegenerative diseases, and that its presence in only some cases of PID may indicate different pathways of disease development.
8. distinct TDP-43 profiles may affect clinical phenotypes differentially in patients with frontotemporal lobar degeneration with ubiquitin-positive inclusions
9. TDP-43 proteinopathies are distinct from most other neurodegenerative disorders--{review}

Submit: New GeneRIF Correction

Map the GeneRIFs to Disease Ontology terms:

"Alzheimer's disease" (2), "Amyloidosis", "Amyotrophic Lateral Sclerosis" (2), "dementia", "Motor Neuron disease", "Neurodegenerative disorders" (2), "Pelvic Inflammatory disease"
How to identify the major annotation of a gene?

Overview of annotation summarization method

Annotation evidences (GeneRIFs) → Mapping → Associated ontology terms
 - Alzheimer's disease (2)
 - Amyloidosis
 - Amyotrophic Lateral Sclerosis (2)
 - ...

Testing the enrichment of ontology terms

Ontology terms ranked by annotation scores
 - Neurodegenerative disorders (8.7)
 - Degenerative disease (8.6)
 - ...

Pruning based on scores and topology
 - Neurodegenerative disorders (8.7)
 - Pelvic Inflammatory disease (1)
 - Amyloidosis (1)

Producing annotation plot

GeneRIFcompendiate

NORTHWESTERN UNIVERSITY
Gene Annotation Summarization using Enrichment Tests

- Evidences (GeneRIFs) + Prior knowledge (ontology) → Gene annotation summarization
 - To test whether a specific annotation (ontology terms) is over-represented among all annotations of a gene
 - The test is similar with the functional enrichment analysis based on a gene list
 - The enrichment test will be performed for every ontology with GeneRIF association (direct / indirect)
Estimate the Statistics Significance of Annotation Enrichment

- If we have a gene \(\text{Gene}_i \), it has \(k \) DO mappable GeneRIF records, \(q \) of them are associated with an DO term \(\text{DO}_j \), which has \(m \) associated GeneRIFs (from different genes) in NCBI database. We want to test the enrichment of function \(\text{DO}_j \) for this \(\text{Gene}_i \).

- P-value: The probability of randomly picking \(k \) GeneRIFs from all \(N \) DO-mappable GeneRIFs in NCBI database, and \(q \) GeneRIFs will be associated with the \(\text{DO}_j \) by chance.

- Define an annotation score:

\[
\text{Annotation Score} = \begin{cases}
\max\{1, -\log_{10}(p - \text{value})\}; & \text{with annotation evidences} \\
0; & \text{without annotation evidence}
\end{cases}
\]
Estimating annotation score of “Neurodegenerative disorders”:

\[N = 44019 \]
\[|Evd_{onto}| = 2236 \]
\[|Evd_{gene}| = 10 \]
\[|Evd_{gene} \cap Evd_{onto}| = 8 \]

p-value = 1.995262e-09

Annotation score of “Neurodegenerative disorders” is 8.7
Motivation:
- Lots of DO terms could be significant after enrichment tests
- Need to define a DO subgraph to best represent the gene annotation

Assumption:
- The DO term with highest score (larger than a certain threshold) can best summarize all GeneRIFs associated with this DO term
- Other DO terms with the same or subset of associated GeneRIFs can be represented by this DO term.
miniSet:
“Neurodegenerative disorders” (8.7),
“Pelvic Inflammatory disease” (1),
“Amyloidosis” (1)
Evaluation

- Test the robustness of function summarization method by adding random annotation
- Compare top annotation in the miniSet with publication records
- Apply the miniSet annotation in the functional analysis based on a gene list
Evaluation Results by Adding Random Annotations

![Graph showing evaluation results by adding random annotations. The x-axis represents the Annotation Score, and the y-axis represents the Percentage of correct matches (%). Different lines and markers represent different percentages of random annotations added: 5%, 10%, 20%, 40%, and pure random annotations.]
Compare top annotation in miniSet with publication records

![Graph showing the percentage of direct GeneRIF matches against the annotation score of the top DO term.](image)
A benchmark microarray data set of pancreatic cancer study (Antonov, et al., 2008) was previously utilized to test GO-based annotations. A list of 125 genes identified in that study.

Functional analysis based on 125 genes

Compare DOLite (using direct annotation mapping of each gene), DOLite (using miniSet mapping of each gene)
Compare the Evaluation Results

<table>
<thead>
<tr>
<th>Rank</th>
<th>DOLite-direct</th>
<th>DOLite-miniSets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cancer</td>
<td>Cancer</td>
</tr>
<tr>
<td>2</td>
<td>Breast cancer</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>3</td>
<td>Embryoma</td>
<td>Colon cancer</td>
</tr>
<tr>
<td>4</td>
<td>Colon cancer</td>
<td>Embryoma</td>
</tr>
<tr>
<td>5</td>
<td>Lung cancer</td>
<td>Lung cancer</td>
</tr>
<tr>
<td>6</td>
<td>Neoplasm metastasis</td>
<td>Pancreas cancer</td>
</tr>
<tr>
<td>7</td>
<td>Stomach cancer</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>8</td>
<td>Squamous cell cancer</td>
<td>Neoplasm metastasis</td>
</tr>
<tr>
<td>9</td>
<td>Prostate cancer</td>
<td>Prostate cancer</td>
</tr>
<tr>
<td>10</td>
<td>Pancreas cancer</td>
<td>Ovary cancer</td>
</tr>
</tbody>
</table>
Relations of top 10 category (DOLite using direct mapping)
Relations of top 10 category (DOLite using miniSet mapping)
Applications

- Identify the major annotations of a gene, and provide good guidance for researchers and database curators
- Functional analysis based on a gene list
- Estimate the functional similarity between genes
- Evaluate the ontology structure (or sub-structure)
Conclusion and Future Work

■ Conclusion
 – The first method provides quantitative annotation information
 – The method is robust for random mapping (annotation errors)
 – The method is effective: most top summarized functions match with publication records.
 – Applying miniSet annotations to the functional enrichment analysis provides more concise and biologically relevant analysis

■ Future Work
 – Using the annotation scores in the functional analysis
 – Further expert curations based on computational results
 – Using similar strategies for other ontologies, like GO
Acknowledgements

- NUgene Team at Northwestern University
- Rex Chisholm, founder of Disease Ontology
- Disease Ontology PIs – Warren Kibbe, NU, and Lynn Schriml, UMB
- John Osborne for MMTx and UMLS mining
- NUBIC: Simon Lin, Gang Feng, Jared Flatow
- NIH Grants: 1R01RR025342-01 (Disease Ontology) and 5U01HG004609-03 (NUgene eMERGE consortium)
5. “GeneRIFcompendiate : Quantitative gene annotation using collective GeneRIF associations and ontology terms” (submitted)